skip to main content


Search for: All records

Creators/Authors contains: "Oda, Katy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Accurate tracers of the stellar magnetic field and rotation are cornerstones for the study of M dwarfs and for reliable detection and characterization of their exoplanetary companions. Such measurements are particularly challenging for old, slowly rotating, fully convective M dwarfs. To explore the use of new activity and rotation tracers, we examined multiyear near-infrared (NIR) spectroscopic monitoring of two such stars—GJ 699 (Barnard’s Star) and Teegarden’s Star—carried out with the Habitable-zone Planet Finder spectrograph. We detected periodic variations in absorption line widths across the stellar spectrum, with higher amplitudes toward longer wavelengths. We also detected similar variations in the strength and width of the 12435.67 Å neutral potassium (Ki) line, a known tracer of the photospheric magnetic field. Attributing these variations to rotational modulation, we confirm the known 145 ± 15 day rotation period of GJ 699, and measure the rotation period of Teegarden’s Star to be 99.6 ± 1.4 days. Based on simulations of the Kiline and the wavelength dependence of the line-width signal, we argue that the observed signals are consistent with varying photospheric magnetic fields and the associated Zeeman effect. These results highlight the value of detailed line profile measurements in the NIR for diagnosing stellar magnetic field variability. Such measurements may be pivotal for disentangling activity and exoplanet-related signals in spectroscopic monitoring of old, low-mass stars.

     
    more » « less